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Linkage Detection Adaptive to Linkage Disequilibrium: The Disequilibrium
Maximum-Likelihood–Binomial Test for Affected-Sibship Data
Jian Huang and Yanming Jiang
Department of Statistics and Actuarial Science, University of Iowa, Iowa City

Summary

It has been demonstrated in the literature that the trans-
mission/disequilibrium test (TDT) has higher power
than the affected-sib-pair (ASP) mean test when linkage
disequilibrium (LD) is strong but that the mean test has
higher power when LD is weak. Thus, for ASP data, it
seems clear that the TDT should be used when LD is
strong but that the mean test or other linkage tests
should be used when LD is weak or absent. However,
in practice, it may be difficult to follow such a guideline,
because the extent of LD is often unknown. Even with
a highly dense genetic-marker map, in which some mark-
ers should be located near the disease-predisposing mu-
tation, strong LD is not inevitable. Besides the genetic
distance, LD is also affected by many factors, such as
the allelic heterogeneity at the disease locus, the initial
LD, the allelic frequencies at both disease locus and
marker locus, and the age of the mutation. Therefore,
it is of interest to develop methods that are adaptive to
the extent of LD. In this report, we propose a disequi-
librium maximum-binomial-likelihood (DMLB) test
that incorporates LD in the maximum-binomial-likeli-
hood (MLB) test. Examination of the corresponding
score statistics shows that this method adaptively com-
bines two sources of information: (a) the identity-by-
descent (IBD) sharing score, which is informative for
linkage regardless of the existence of LD, and (b) the
contrast between allele-specific IBD sharing score, which
is informative for linkage only in the presence of LD.
For ASP data, the proposed test has higher power than
either the TDT or the mean test when the extent of LD
ranges from moderate to strong. Only when LD is very
weak or absent is the DMLB slightly less powerful than
the mean test; in such cases, the TDT has essentially no
power to detect linkage. Therefore, the DMLB test is an
interesting approach to linkage detection when the ex-
tent of LD is unknown.
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Introduction

Recently, Abel et al. considered the maximum-likeli-
hood-binomial (MLB) method for linkage analysis using
affected-sibship data (Abel et al. 1998; Abel and Müller-
Myhsok 1998). This method, based on the binomial dis-
tribution of parental alleles among affected offspring
(Badner et al. 1984; Majumder and Pal 1987), can be
applied to multiplex sibships in a natural way. For the
models used in simulation studies by Abel et al., this test
has correct type 1–error rate and has statistical power
similar to that of the mean test and maximum-likeli-
hood–score (MLS) test (Blackwelder and Elston 1985;
Risch 1990).

The MLB and other linkage-analysis methods are
based on the identity-by-descent (IBD)–sharing config-
uration, in which the allelic state is not taken into ac-
count. According to the formulation of the linkage like-
lihood by Whittemore (1996), given the affection status
of the individuals and the structure of a pedigree and
under the assumption of linkage equilibrium, the like-
lihood depends only on the IBD-sharing configuration.
Thus, under linkage equilibrium, the IBD-sharing con-
figuration is a sufficient statistic for the genetic param-
eters and contains all the information for linkage. How-
ever, this is no longer the case in the presence of linkage
disequilibrium (LD), as has been illustrated by Clerget-
Darpoux (1982) in a LOD-score analysis; she showed
that the expected value of the LOD score is higher when
LD is accounted for than when it is not.

The transmission/disequilibrium test (TDT) is de-
signed to detect linkage in the presence of LD (Spielman
et al. 1993). It is based on the idea that, if there is linkage,
parents will preferentially transmit marker alleles in LD
with disease to their affected offspring (Rubinstein et al.
1981; Falk and Rubinstein 1987; Ott 1989). The TDT
can use families with a single affected offspring. For
families with two or more affected offspring, the TDT
can be thought of as using the contrast between allele-
specific IBD-sharing scores—it examines both excessive
sharing of alleles in positive LD with the disease and
reduced sharing of alleles in negative LD with the
disease.

If a disease-causing mutation originated in one or a
few founders in a population, the alleles closely linked
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to the mutation may be transmitted together with the
mutation, for many generations. With the rapid progress
of molecular technology, it is increasingly feasible to use
a dense set of genetic markers, such as single-nucleotide
polymorphisms, saturating the genome in a genomewide
screen (Wang et al. 1998). Some of the markers should
be located close to the disease-causing mutation and,
hence, could be in LD with the mutation. It is desirable
to exploit such potential LD in gene-mapping studies
(Risch and Merikangas 1996).

Several studies have used affected-sib-pair (ASP) data
to compare the mean test’s power to detect linkage and
the TDT’s power to detect linkage (Risch and Merikan-
gas 1996; Camp 1997; Xiong and Guo 1998; Tu and
Whittemore 1999). In brief, the conclusion is that the
TDT has higher power when LD is complete or near
complete but that the mean test has higher power when
LD is weak. Thus it seems clear that the TDT should
be used when LD is strong but that the mean test or
some other linkage test should be used when LD is weak
or absent. However, it may be difficult to follow such a
guideline in practice, because the extent of LD is usually
unknown. Indeed, even with a highly dense genetic-
marker map, in which some markers should be located
near the disease-predisposing mutation, strong LD is not
inevitable. Besides the genetic distance, LD is also a func-
tion of many additional factors, such as the initial LD,
the allelic frequencies at both disease locus and marker
locus, and the age of the mutation. (Devlin and Risch
1995; Guo 1997). How large an effect these factors have
on LD is difficult to assess.

Allelic heterogeneity within a disease gene also has a
strong impact on LD (Terwilliger and Weiss 1998).
Many disease-predisposing genes have multiple alleles
predisposing to disease, such as genes predisposing Alz-
heimer disease (Tysoe et al. 1998), breast cancer (Szabo
and King 1997), and cystic fibrosis (Welsh and Smith
1995). This appears to be a common phenomenon in
many diseases. Terwilliger and Weiss (1998) have listed
a selection of 64 disease-predisposing loci with multiple
alleles that have been published in The American Journal
of Human Genetics’s volumes 60–62 (1997–98). Pre-
vious work has shown that allelic heterogeneity de-
creases the degree of LD and can drastically reduce the
power of the TDT (Terwilliger and Weiss 1998; Slager
et al. 1999).

Therefore, it is of interest to develop methods that are
adaptive to the extent of LD. These methods should
make full use of LD if it is indeed present and should
have power comparable to that of standard linkage
methods, such as the mean test, when LD is weak or
absent. To achieve this, they must efficiently combine
the following two sources of information: (1) the stan-
dard IBD-sharing configuration, which is informative for
linkage regardless of the existence of LD, and (2) the

allele-specific IBD-sharing configuration for marker al-
leles in positive or negative LD with the disease, which
is informative for linkage only in the presence of LD.

In the present report, we propose a disequilibrium
maximum-likelihood–binomial (DMLB) test for linkage.
This method extends the MLB test, by incorporating LD,
and appears to offer an approach to efficiently combine
linkage information from the IBD-sharing and the allele-
specific IBD-sharing scores. As does the original MLB
method, the DMLB method uses families with multiple
affected sibships, in a natural way. Because the DMLB
method uses IBD-sharing information, its power to de-
tect linkage is comparable to that of the mean test, for
families with ASPs or multiplex-sibship data, when LD
is weak or absent.

In the following, we first formulate the DMLB test
and present its asymptotic distributions under the null
hypothesis of no linkage. We then show, by examining
its score statistics, that the DMLB test can be considered
as an adaptive combination of the mean test and the
TDT. We also demonstrate that, for a wide range of LD,
the DMLB test has higher statistical power than do the
TDT and the mean test, for ASP data.

The DMLB Test for Linkage

Consider a nuclear family with m affected children.
Let m1 be the number of affected children who have
received marker allele B1 from a heterozygous B1B2 par-
ent. If the marker is not linked to the disease, then m1

has a binomial distribution with parameters m and .5
(Majumder and Pal 1987; Abel et al. 1998). Thus, a test
for linkage can be constructed by assessment of the de-
parture, from .5, of the probability that allele B1 of the
heterozygous parent will be transmitted (Abel et al.
1998; Abel and Müller-Myshok 1998). For this hetero-
zygous parent and the affected sibs, with an unknown
phase and assuming linkage equilibrium, Abel et al. pro-
posed the following likelihood as the basis for testing of
linkage:

m m�m m m�m1 1 1 1.5a (1 � a) � .5(1 � a) a , (1)

where if there is no linkage and if there isa = .5 a 1 .5
linkage. Heuristically, a may be interpreted as the prob-
ability that an affected child has received the marker
allele transmitted with the disease allele. The overall like-
lihood is simply the product of all the likelihoods over
the heterozygous parents and sibships. Likelihood (1)
can also be motivated by use of a recessive model with
a phase-unknown double-backcross mating type. How-
ever, no such model specification is required for the like-
lihood ratio (LR) test to be valid, since it is correct under
the null hypothesis of no linkage, and hence the test has
the correct type 1–error rate for a given critical value.
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A reviewer has pointed out that the binomial likelihood
(1) is actually a composite likelihood and not a true
likelihood, because, under the alternative hypothesis of
linkage, the transmission of maternal alleles may not be
independent of the transmission of paternal alleles. This
comment also applies to likelihood (2), below.

Likelihood (1) is a mixture of two binomial distri-
butions that are mirror images of each other. The mixing
proportion .5 is based on the assumption of linkage equi-
librium. For any fixed m and m1, this assumption results
in a likelihood that is least informative for a, because
there is maximum uncertainty about which component
of the mixture distribution generates the data. However,
in the presence of LD, the mixing proportion is no longer
.5. This can be incorporated into the likelihood by in-
troduction of a parameter, l, representing the mixing
proportion. Specifically, for the jth heterozygous parent
and kth sibship, let mjk be the number of affected chil-
dren, and let mjk1 be number of affected children who
have received the marker allele B1 from the jth hetero-
zygous parent. Then the form of the likelihood that gen-
eralizes (1) and that incorporates LD is

m m �mjk1 jk jk1L (a,l) = la (1 � a)jk

m m �mjk1 jk jk1�(1 � l)(1 � a) a . (2)

The overall likelihood is

L(a,l) = �L (a,l) . (3)jk
jk

The range of l depends on our knowledge of the extent
of LD. There are two situations: (i) if there is prior
knowledge that allele B1 is in positive LD with disease,
such as in the case when previous population studies
have indicated that the allele is associated with the dis-
ease of interest, then the range of l is ; (ii) if.5 � l � 1
there is no prior knowledge about which marker allele
is in LD with disease, such as when one is conducting
a genomewide screen, then the range of l is 0 � l �
. Accordingly, the hypotheses and the LR-test statistics1

are formulated as follows.
In the first case, the hypotheses are

H : a = .5, .5 � l � 1 ,0

H : a 1 .5, .5 � l � 1 . (4)A

Let be the maximum-likelihood estimator of (a,l)ˆˆ(a ,l )1 1

under the restriction that and ..5 � a � 1 .5 � l � 1
The LR-test statistic is

ˆˆL(a ,l )1 1
L = , (5)1 L(.5)

where , with .ML(.5) = .5 M = S mjk jk

In the second case, the hypotheses are

H : a = .5, 0 � l � 1 ,0

H : a 1 .5, 0 � l � 1 . (6)A

Let be the maximum-likelihood estimator ofˆˆ(a ,l )2 2

(a,l) under the restriction that and.5 � a � 1 0 �
. The LR-test statistic isl � 1

ˆˆL(a ,l )2 2
L = , (7)2 L(.5)

where L(.5) is the same as above.
We note that the range of a is restricted to . Thisa � .5

is because the likelihood is symmetrical in the sense that
, as has been pointed out by aL(a,l) = L(1 � a,1 � l)

reviewer. Consider the four quadrants of a unit square:
, , ,A = {(a,l) : a � [.5,1] l � [0,.5]} B = {(a,l) : a � [.5,1]

, , , andl � [.5,1]} C = {(a,l) : a � [0,.5] l � [0,.5]} D =
, . Because of symmetry,{(a,l) : a � [0,.5] l � [.5,1]}

the likelihood is the same for the regions A and D and
for the regions B and C. Thus, the likelihood need be
evaluated only for the regions A and B, which are for

.a � .5
Under the null hypothesis of no linkage, the value of

parameter l is irrelevant, because the likelihood is a
constant as long as . Thus, the regularity condi-a = .5
tions required for the x2 distributional results for an LR
test are not satisfied, and the LR statistics do not have
an asymptotic x2 distribution.

If the data set consists of families with a single affected
child, the statistic 2logL1 is asymptotically distributed
as a 50:50 mixture of and distributions, where2 2x x0 1

denotes the degenerate distribution that puts prob-2x0

ability 1.0 at 0 and where 2logL2 is asymptotically dis-
tributed as a distribution. For such data, it is shown,2x1

in the next section, that the LR tests L1 and L2 are equiv-
alent to the one-sided and two-sided versions of the TDT,
respectively. If most of the families in the data set have
two or more affected children, then 2logL1 is asymp-
totically distributed as —that is, a2 2 2.25x � .5x � .25x0 1 2

.25:.5:.25 mixture of , , and —and 2logL2 is as-2 2 2x x x0 1 2

ymptotically distributed as a 50:50 mixture of and2x1

. Formal statements for the distributions of L1 and L2,
2x2

as well as the proof, are given in Appendix A.
Note that, when parameter l is introduced, the df

increase not by 1, as in many standard problems, but
only by approximately a quarter, for testing hypotheses
(4), or approximately half, for hypotheses (6).
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DMLB as an Adaptive Combination of the TDT and
the Mean Test

In this section, we examine the relation between the
TDT, the mean test, and the proposed DMLB test by
considering the latter’s score statistics. We first show
that, for data consisting of simplex families, the DMLB
is asymptotically equivalent to the TDT. For multiplex
families, the DMLB test can be viewed as an efficient
combination of the TDT and the mean test. It adaptively
combines two aspects of the linkage information from
the data: the IBD-sharing scores used in the mean test
and the allele-specific IBD-sharing scores used in the
TDT.

Families with a Single Affected Child

First, consider data consisting of families with a single
affected child. The mean test cannot be applied to such
data; however, both the TDT and the DMLB test can
be used.

Let n1 be the total number of heterozygous parents,
and let n11 be total number of marker alleles B1 trans-
mitted from the heterozygous B1B2 parents. Likelihood
(3) becomes

n11L(a,l) = [la � (1 � l)(1 � a)]
n �n1 11#[(1 � l)a � l(1 � a)] .

In this case, a and l cannot be estimated simulta-
neously, because these two parameters are con-
founded. However, it is still possible to test the hy-
pothesis , provided that . Leta = .5 l ( .5 b =2

. Then2[la � (1 � l)(1 � a) � .5] = 4(.5 � l)(.5 � a)
. Likelihood (3) can be(1 � l)a � l(1 � a) =.5(1 � b )2

rewritten, up to a multiplicative constant, as

n n �n11 1 11L(b ) = (1 � b ) (1 � b ) , (8)2 2 2

because, for any and , if and0 � l � 1 l ( .5 a = .5
only if . Therefore, testing is equivalent tob = 0 a = .52

testing —provided that ; that is, providedb = 0 l ( .52

that LD exists.
The TDT can be derived as a score test corresponding

to the DMLB test. The score statistic of likelihood (9)
evaluated at is , and the Fisher infor-b = 0 2n � n2 11 1

mation at is n1. Thus the score-test statistic isb = 02

2 2(2n � n ) (n � n )11 1 11 10= ,
n n1 1

where is the number of B2 alleles trans-n = n � n10 1 11

mitted from the heterozygous parents. This is exactly the
TDT statistic given by Spielman et al. (1993). According

to standard theory, the DMLB test, which is the LR test
based on L(b2) in likelihood (9), is asymptotically equiv-
alent to the TDT (Cox and Hinkley 1974); however, for
samples that include families with two or more affected
children, this equivalence no longer holds, as shown be-
low for affected-sib-pair and mixed-sibship data.

Families with Two Affected Children

Suppose that there are n2 heterozygous B1B2 parents
in the data set. Let n20 be the number of heterozygous
parents who transmitted B2 to both children; let n21 be
the number of heterozygous parents who transmitted B1

to one child and B2 to another child; and let n22 be the
number of heterozygous parents who transmitted B1 to
both children. The likelihood of the DMLB test can be
written as

2 2 n n20 21L(a,l) = [l(1 � a) � (1 � l)a ] [a(1 � a)]
2 2 n22#[la � (1 � l)(1 � a) ] .

It is difficult to work with this likelihood parametrized
in terms of (a,l), because the null hypothesis corre-
sponds to a set of points . Thus,{(a,l) : a = .5,0 � l � 1}
we reparameterize this likelihood, using b = 4(.5 �1

. Let . The likelihood2a) ,b = 4(.5 � a)(.5 � l) b = (b ,b )2 1 2

becomes

n n n20 21 22L(b) = (1 � b � 2b ) (1 � b ) (1 � b � 2b ) .1 2 1 1 2

(9)

By its definition and the range of a and l, b must lie
within the region B = {(b ,b ) : 0 � b � 1,0 � b �1 2 1 2

, for hypotheses (4), or must lie within the21,b � b }2 1

region 2B = {(b ,b ) : 0 � b � 1, � 1 � b � 1,b �1 2 1 2 2

, for hypotheses (6). In both cases, the null hy-b }1

pothesis corresponds to a single point .(b ,b ) = (0,0)1 2

Without consideration of the restriction that b belongs
to , the score-test statistic corresponding to likelihoodB
(11) is

2 2(n � n � n ) 2(n � n )20 22 21 22 20� ,
n n2 2

in which the first term is the mean test statistic and the
second term is the TDT statistic. Thus, without consid-
eration of the restriction , the score test for likelihoodB
(11) is simply the sum of the mean test and the TDT.
Although the mean test statistic and the TDT are in-
dependent (Spielman et al. 1993), this simple addition
of two independent test statistics results in a test with 2
df, and its power may be lower than that of either of
the two original tests with 1 df.
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Therefore, it is important to take into account the
restriction . The resulting appropriate score statistic isB

2 2(n � n � n ) 2(n � n )20 22 21 22 20�
n n2 2

2

n � n � n20 22 21� inf � b1( ){ �b� nB 2

2�2(n � n )22 20
� � b .2[ ] }�n2

This score statistic is asymptotically equivalent to the
LR statistic. This form of restricted score statistic is mo-
tivated by equation (A1) in Appendix A, which is used
in proving the asymptotic distribution of the LR
statistics.

The positive homogeneous cone approximating atB
can be used to replace in the expression aboveb = 0 B

(Chernoff 1954). This simplifies computation and does
not change the asymptotic distribution. For associatedB
with hypotheses (4), the approximating cone is the first
quadrant, . For associ-C = {(b ,b ) : b � 0,b � 0} B1 2 1 2

ated with hypotheses (6), the approximating cone is the
half space ; that is, equivalently,C = {(b ,b ) : b � 0}1 2 1

the score-test statistic can be defined as

2 2(n � n � n ) 2(n � n )20 22 21 22 20S = �
n n2 2

2n � n � n20 22 21� inf � b( )1[ �b�C n2

2�2(n � n )22 20
� � b .2( ) ]�n2

Because has a simple form, S can be calculated ex-C

plicitly, as follows. For testing hypotheses (4), the score
statistic is

0 if n � n � n20 22 21

and n � n ,22 20

2(n � n � n )20 22 21 if n � n 1 n20 22 21n2

and n � n ,22 20

S = (10)21 2(n � n )22 20 if n � n � n20 22 21n2

and n 1 n ,22 20

2{(n � n � n )20 22 21 if n � n 1 n20 22 21n2
22(n � n )22 20� and n 1 n .22 20n2

For testing hypotheses (6), the score statistic is

22(n � n )22 20 if n � n � n ,20 22 21n2

2(n � n � n )20 22 21S = if n � n 1 n . (11)2 20 22 21n2

2{ 2(n � n )22 20�
n2

By means of the argument given in the last paragraph
of Appendix A, it can be directly verified that S1 is as-
ymptotically distributed as and2 2 2.25x � .5x � .25x0 1 2

that S2 is asymptotically distributed as , for2 2.5x � .5x1 2

the respective hypotheses, (4) and (6), which agree with
the asymptotic distributions of the LR tests.

Note that is a score based on IBD shar-n � n � n20 22 21

ing that ignores the allelic state and that is then � n22 20

contrast of allele-specific IBD-sharing scores. It can be
seen from equations (10) and (11) that the score statistics
of the DMLB test adaptively combine these two aspects
of linkage information. Furthermore, if there is linkage,
we expect that , and, if there is linkagen � n 1 n20 22 21

and LD between marker allele B1 and the disease, we
expect that . Thus the value of S1 or S2 undern 1 n22 20

linkage and LD will likely be the sum of the mean test
and the TDT statistics, but with df ! 2. This gives an
intuitive reason why the DMLB should have good power
in comparison with the TDT or the mean test, for a
broad range of LD.

Mixed-Sibship Data

In practice, a sample usually consists of families with
sibships of variable sizes. The foregoing interpretation
of the DMLB test from a score-test point of view con-
tinues to be applicable. To illustrate this, we consider a
sample that has n1, n2, and n3 heterozygous parents with
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one, two, and three affected sibs, respectively. Let
(n10,n11) and (n20,n21,n22) be defined as above. Use the
following notation:

n = number of parents who transmit B30 2

to all three children ,

n = number of parents who transmit B31 1

to one child and B to two children ,2

n = number of parents who transmit B32 1

to two children and B to one child ,2

n = number of parents who transmit B33 1

to all three children .

Then, after some calculation using the reparametrization
b, the likelihood of the data is ,L(b) = L (b)L (b)L (b)1 2 3

where

n n10 11L (b) = (1 � b ) (1 � b ) ,1 2 2

n n20 21L (b) = (1 � b � 2b ) (1 � b )2 1 2 1

n22#(1 � b � 2b ) ,1 2

n30L (b) = [1 � 3b � b (3 � b )]3 1 2 1

n31#[1 � b � b (1 � b )]1 2 1

n32#[1 � b � b (1 � b )]1 2 1

n33#[1 � 3b � b (3 � b )] .1 2 1

Let , ,s = n � n � 3n � 3n s = n � n � n1 20 22 30 33 2 21 31 32

,t = n � 2n � 3n � n t = n � 2n � 3n �1 11 22 33 32 2 10 20 30

. For the testing of hypotheses (4), the score-test sta-n31

tistic is

0 if s � s and t � t ,1 2 1 2

2(s � s )1 2 if s 1 s and t � t ,1 2 1 2n � 3n2 3

2(t � t )1 2S = if s � s and t 1 t ,1 1 2 1 2n � 2n � 3n1 2 3

2(s � s )1 2 if s 1 s and t 1 t .1 2 1 2n � 3n{ 2 3

2(t � t )1 2�
n � 2n � 3n1 2 3

For the testing of hypotheses (6), the score statistic is

2(t � t )1 2 if s � s ,1 2n � 2n � 3n1 2 3
S =2 2 2(s � s ) (t � t ){ 1 2 1 2� if s 1 s .1 2n � 3n n � 2n � 3n2 3 1 2 3

Again, S1 and S2 adaptively combine the test statistic
based on IBD sharing and the TDT2(s � s ) /(n � 3n )1 2 2 3

statistic . Again, either on the2(t � t ) /(n � 2n � 3n )1 2 1 2 3

basis of the results of the asymptotic distributions of the
LR-test statistics L1 and L2 or by direct verification, S1

is asymptotically distributed as ,2 2 2.25x � .5x � .25x0 1 2

and S2 is asymptotically distributed as .2 2.5x � .5x1 2

Power Comparison of the TDT, the Mean Test, and
DMLB, for ASP Data

For ASP data, the LR tests L1 and L2, defined in for-
mulas (5) and (7), are equivalent to the score tests S1

and S2 given by formulas (10) and (11). So the power
of the DMLB test can be derived by means of the ex-
pressions for S1 and S2. To obtain the noncentrality pa-
rameters required for power calculations, it is necessary
to consider the transmission probabilities under linkage
and LD. These probabilities are calculated as follows.

For a diallelic marker with two alleles, B1 and B2, there
are three informative parental mating types at the
marker locus: (i) , (ii) , andB B # B B B B # B B1 2 1 1 1 2 2 2

(iii) . For the mating type ,B B # B B B B # B B1 2 1 2 1 2 1 1

there are three possible types of ASPs with respect to
the marker genotypes: (B1B1,B1B1), (B1B1,B1B2), and
(B1B2,B1B2). Let denote the event that at least oneH

parent is heterozygous at the marker locus; that is,
. WeH = {B B # B B ,orB B # B B ,orB B # B B }1 2 1 1 1 2 2 2 1 2 1 2

define the conditional probabilities as

p = P(B B ,B B ,B B # B B FASP,H) ,11 1 1 1 1 1 2 1 1

p = P(B B ,B B ,B B # B B FASP,H) ,12 1 1 1 2 1 2 1 1

p = P(B B ,B B ,B B # B B FASP,H) .13 1 2 1 2 1 2 1 1

These are the conditional probabilities of children’s
marker genotypes and parental marker genotypes, given
that both children are affected and the event . WeH

condition on the fact that both children are affected and
the event , because only those families satisfying theseH

two conditions are actually used in the test.
Similarly, for the mating type , there areB B # B B1 2 2 2

three possible types of ASPs: (B1B2,B1B2), (B1B2,B2B2),
and (B2B2,B2B2). We define the conditional probabili-
ties as
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p = P(B B ,B B ,B B # B B FASP,H) ,21 1 2 1 2 1 2 2 2

p = P(B B ,B B ,B B # B B FASP,H) ,22 1 2 2 2 1 2 2 2

p = P(B B ,B B ,B B # B B FASP,H) .23 2 2 2 2 1 2 2 2

For mating type , there are six possibleB B # B B1 2 1 2

types of ASPs: (B1B1,B1B1), (B1B1,B1B2), (B1B1,B2B2),
(B1B2,B1B2), (B1B2,B2B2), and (B2B2,B2B2). We define the
conditional probabilities as

p = P(B B ,B B ,B B # B B FASP, H) ,31 1 1 1 1 1 2 1 2

p = P(B B ,B B ,B B # B B FASP, H) ,32 1 1 1 2 1 2 1 2

p = P(B B ,B B ,B B # B B FASP, H) ,33 1 1 2 2 1 2 1 2

p = P(B B ,B B ,B B # B B FASP, H) ,34 1 2 1 2 1 2 1 2

p = P(B B ,B B ,B B # B B FASP, H) ,35 1 2 2 2 1 2 1 2

p = P(B B ,B B ,B B # B B FASP, H) .36 2 2 2 2 1 2 1 2

The calculation of these conditional probabilities is given
in Appendix C.

Let p2, p1, and p0 be the probabilities that a hetero-
zygous parent transmits 2, 1, and 0 B1 alleles to both
children, conditional on both children being affected and
there being at least one heterozygous parent in the fam-
ily. When we consider all the possible mating types, we
have

p = p � p � p � .5p � .25p ,2 11 21 31 32 34

p = p � p � .5p � p � .5p � .5p ,1 12 22 32 33 34 35

p = p � p � .25p � .5p � p .0 13 23 34 35 36

These probabilities are functions of the recombination
fraction (v), LD coefficient, penetrances, and gene fre-
quencies at both disease and marker loci.

Let the sample size n be the number of heterozygous
parents from families with both an ASP and at least one
heterozygous parent. These families are those who are
actually used in the computation of the test statistics.
When the expressions for the score statistics S1 and S2

defined by expressions (10) and (11) are used, the non-
centrality parameters are and�h = 2 n(.5 � p ) h =1 1 2

.�2n(p � p )2 0

Let andY ∼ N[h ,4p (1 � p )] Y ∼ N{h ,2[p � p �1 1 1 1 2 2 0 2

be two independent normal random varia-2(p � p ) ]}0 2

bles. Let c1 be the critical value of the DMLB test for a
given type 1–error rate. For the one-sided hypotheses
(4), the power of the DMLB can be approximated by

� �P(Y 1 c )P(Y � 0) � P(Y 1 c )P(Y � 0)1 1 2 2 1 1

2 2�P(Y � Y 1 c ,Y 1 0,Y 1 0) .1 2 1 1 2

For the two-sided hypotheses (6), the power of the
DMLB test can be approximated by

�P(FY F 1 c )P(Y � 0)2 1 1

2 2�P(Y � Y 1 c ,Y 1 0) .1 2 1 1

These two expressions can be derived directly from ex-
pressions (10) and (11) and by invoking the central limit
theorem.

The power of the TDT can be approximated by
, and the power of the mean test can be�P(FY F 1 c )2 2

approximated by .�P(Y 1 c )1 3

When there is no linkage, and ,p = .5 p = p = .251 0 2

regardless of whether LD is present. When there is no
LD, , regardless of whether linkage is present.p = p0 2

Thus, h1 can be considered as a measure of linkage, and
h2 can be considered as a “product measure” of linkage
and LD; here we call h2 a “product measure” because
it is equal to 0 if either linkage or LD does not exist.
On the basis of the foregoing expressions for the power
functions, we see that both h1 and h2 contribute to the
power of the DMLB; however, only h1 contributes to the
power of the mean test, and only h2 contributes to the
power of the TDT.

We now give examples of the sample sizes required
to achieve 80% power when the DMLB, the TDT, and
the mean test are used, when LD ranges from 0 to the
maximum extent. For brevity, we consider only the two-
sided hypotheses (6). The type 1–error rate is set at
.0001. The critical value for the DMLB test, c =1

, is computed on the basis of its asymptotic dis-17.38
tribution . The critical value for the TDT is2 2.5x � .5x1 2

, corresponding to the distribution, and the2c = 15.14 x2 1

critical value for the mean test is , correspond-c = 13.833

ing to the distribution.2 2.5x � .5x0 1

The sample sizes required to achieve 80% power for
the TDT and the mean test can be calculated by means
of the following equation: , where, for2n = [(.84j � c)/m]
the TDT, , , and 2� �c = c = 3.89 m = 2(p � p ) j =2 2 0

and, for the mean test,22[p � p � (p � p ) ] c =2 0 2 0

, , and . There2�c = 3.72 m = 2(.5 � p ) j = 4p (1 � p )3 1 1 1

is no simple formula for sample-size calculation for the
DMLB test. However, because power is an increasing
function of sample size, it is easy to find the n that gives
80% power numerically.

We consider four genetic models: recessive, dominant,
additive, and multiplicative. In each model, the v be-
tween marker and disease locus is set to be 0. Let f0, f1,
and f2 be the penetrances of disease genotypes dd, Dd,
and DD, respectively, where D is the disease-causing
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allele. The relative genotypic risks (GRRs) are defined
to be and . We consider the followingr = f /f r = f /f1 1 0 2 2 0

GRR values in the power calculation: for the recessive
model, , ; for the dominant model,r = 1 r = 4 r = r =1 2 1 2

; for the additive model, and ; and, for the4 r = 4 r = 71 2

multiplicative model, and . Three disease-r = 4 r = 161 2

allele frequencies—.10, .20, and .50—and two frequen-
cies—.20 and .50—of marker allele B1 are considered.
Therefore, in each model, for the given v of 0 and the
GRRs, there are six combinations of disease- and
marker-allele frequencies. For each of these six combi-
nations, LD in the range of 0%–100% of the maximum
possible extent, with a step size of 5%, is used in the
calculation. Figure 1 shows the sample size versus the
percentage of the maximum possible LD under the re-
cessive model, for each of the six configurations. Simi-
larly, figures 2–4 show the sample size versus the per-
centage of the maximum possible LD, for the dominant,
additive, and multiplicative models, respectively. In each
plot, the unbroken line is for the DMLB test, the dashed
line for the TDT, and the dotted line for the mean test.

These plots show that, for all the models considered,
the DMLB test requires smaller sample sizes to achieve
80% power than does the TDT, for the whole range of
LD. For both the DMLB test and the TDT, as the per-
centage of maximum LD changes from 0% to 100%,
the range of the sample sizes needed to achieve 80%
power becomes larger. When LD is maximum or nearly
so, the power of the DMLB test and that of the TDT
are similar; however, when LD is less than maximum,
the DMLB test has greater power than does the TDT.
The difference ranges from appreciable to substantial if
the percentage of the maximum possible LD is !75%.
When LD is very weak or absent, the mean test has
higher power than both the TDT and the DMLB; in this
case, however, for the models considered here, the sam-
ple sizes needed to achieve 80% power are large and
beyond the range of most studies.

We have also considered models with different pa-
rameter values, such as GRRs of 2.0 and 1.5 and families
with more than two affected children. The results (not
shown) are similar to those shown in figures 1–4. Thus
the conclusions above appear to hold quite generally.

Discussion

The DMLB test is a test for linkage. The only purpose
for the incorporation of LD into the likelihood is to
increase statistical power in the detection of linkage. By
the equivalence between the LR and score tests examined
above (in the section entitled “DMLB as an Adaptive
Combination of the TDT and the Mean Test”), incor-
poration of LD into the likelihood amounts to adaptive
combination of information from IBD-sharing and al-
lele-specific IBD-sharing scores.

An important property of the TDT is that it is not
affected by population admixture. More precisely, the
TDT has correct type 1 error when data are ascertained
in an admixture population. This is also true for the
DMLB test, because it uses children’s marker-genotype
data, given the parental marker genotypes. This can also
be seen from the form of the likelihood; for example,
consider the case in which the population consists of
two subpopulations and in which the coefficients of LD
of the two subpopulations are different. This does not
affect the type 1 error of the LR tests given by expres-
sions (5) and (7), because, under the null hypothesis

, the parameter l disappears from the likelihood.a = .5
Thus the value of l has no effect on the distribution of
the test statistic when there is no linkage. The fact that
the DMLB is not affected by population admixture can
also be seen from the corresponding score statistics de-
scribed above (in the section entitled “DMLB as an
Adaptive Combination of the TDT and the Mean Test”).

An advantage of the DMLB test is that it can explicitly
incorporate locus heterogeneity, in a way similar to that
of the heterogeneity LOD score (Smith 1961; Ott 1991).
This is useful, because locus heterogeneity is common
in complex diseases. Incorporation of locus heteroge-
neity into the test should increase the power, if it indeed
exists. It is of interest to study the properties and per-
formance of the heterogeneity DMLB test in comparison
with the test when locus heterogeneity is not taken into
account. This is a problem that we intend to consider
in the future. Note that it is not possible to incorporate
locus heterogeneity into the TDT or into the score tests
that have been given above (in the section entitled
“DMLB as an Adaptive Combination of the TDT and
the Mean Test”).

The DMLB is described for a marker with two alleles.
One way to generalize it to a marker with more than
two alleles is to focus on one allele at a time and to treat
the other alleles as the second allele, as is done in the
report by Spielman et al. (1993), and then to use the
maximum of the resultant DMLB statistics (either in the
form of LR statistics [given above, in the section entitled
“The DMLB Test for Linkage”] or in the form of score
statistics [given above, in the section entitled “DMLB as
an Adaptive Combination of the TDT and the Mean
Test”]), as is done in the report by Schaid (1996). The
distribution of this maximum statistic may not be trac-
table analytically; however, an empirical P value can be
obtained by simulations, by means of an approach de-
scribed by Schaid (1996). Several extensions of the TDT,
for multiple alleles, have been considered (Sham and
Curtis 1995; Schaid 1996; Spielman and Ewens 1996).
It would be worthwhile to consider analogous exten-
sions of the DMLB test, for a marker with multiple
alleles.

In the formulation of the DMLB test, it is assumed



Figure 1 Recessive model: sample sizes required to achieved 80% power, with a type 1 error of .0001. The unbroken line is for the
DMLB test, the dashed line is for the TDT, and the dotted line is for the mean test. The plots are for the six combinations of disease-allele
frequencies .10, .20, and .50 and marker-allele (B1) frequencies .20 and .50. In each case, and the GRRs are and .v = 0 r = 1 r = 41 2



Figure 2 Dominant model: sample sizes required to achieve 80% power, with a type 1 error of .0001. The unbroken line is for the DMLB
test, the dashed line is for the TDT, and the dotted line is for the mean test. The plots are for the six combinations of disease-allele frequencies
.10, .20, and .50 and marker-allele (B1) frequencies .20 and .50. In each case, and the GRRs are and .v = 0 r = 4 r = 41 2



Figure 3 Additive model: sample sizes required to achieved 80% power, with a type 1 error of .0001. The unbroken line is for the DMLB
test, the dashed line is for the TDT, and the dotted line is for the mean test. The plots are for the six combinations of disease-allele frequencies
.10, .20, and .50 and marker-allele (B1) frequencies .20 and .50. In each case, and the GRRs are and .v = 0 r = 4 r = 71 2



Figure 4 Multiplicative model: sample sizes required to achieved 80% power, with a type 1 error of .0001. The unbroken line is for the
DMLB test, the dashed line is for the TDT, and the dotted line is for the mean test. The plots are for the six combinations of disease-allele
frequencies .10, .20, and .50 and marker-allele (B1) frequencies .20 and .50. In each case, and the GRRs are and .v = 0 r = 4 r = 161 2
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that the parental marker genotypes can be completely
known. In practice, this may not be possible, especially
for diseases with delayed age at onset, such as Alzheimer
disease. Part or all of the parental genotypes may be
missing. Several methods have been proposed to use af-
fected and unaffected children when parental genotypes
are not available (Boehnke and Langefeld 1998; Horvath
and Laird 1998; Spielman and Ewens 1998; Knapp
1999). It would be interesting to extend the DMLB test
to the situation when parental genotypes are not
available.

In summary, the DMLB test adaptively combines link-

age information from the IBD-sharing and allele-specific
IBD-sharing scores and, in statistical power, compares
favorably with the mean test and with the TDT, for a
broad range of LD. Therefore, the DMLB test appears
to be an interesting approach to linkage detection when
the extent of LD is unknown.
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Appendix A

Asymptotic Distribution of the LR-Test Statistics

We first give a formal statement of the asymptotic distribution of the LR-test statistics.
PROPOSITION 6.1. Let nj be the number of heterozygous parents with j affected children, , with J being1 � j � J

a finite integer. Let . Suppose that the limits , exist.Jn = S n t = lim (n /n),1 � j � Jj=1 j j j
nr�1. If for all , then under the null hypothesis, as , and . Here2 2 2t = 0 j � 2 n r � 2 log L r .5x � .5x 2 log L r xj 1 d 0 1 2 d 1

denotes convergence in distribution.rd

2. If there is at least one for some , then, under the null hypothesis, as ,t 1 0 j � 2 n r �j

, and .2 2 2 2 22 log L r .25x � .5x � .25x 2 log L r .5x � .5x1 d 0 1 2 2 d 1 2

The condition on tj in part 1 of Proposition 6.1 means that the data essentially consist of families with a single
affected offspring; the condition on tj in part 2 of Proposition 6.1 means that the data consist of a nonnegligible
number of families with either affected sib pairs or multiple affected sibships.

Part 1 of Proposition 6.1 follows from standard results. For part 2, we only prove the result for L1. The result
for L2 can be shown similarly. Let nk be the number of heterozygous parents with k affected children, where

. Here K is a finite integer. Let . Suppose that exists. Then the limiting versionK1 � k � K n = S n t = lim (n /n)k=1 k k k
nr�of the log likelihood (divided by n) is , where is the log-likelihood function forK�(a,l; x) = S t � (a,l; x) � = log Lk=1 k k k k

a heterozygous parent with k affected children and where

x k�x k�x xL (a,l; x) = la (1 � a) � (1 � l)a (1 � a) , x = 0,1,2,) ,k; k � 1 .k

The technical difficulty in the establishment of the asymptotic distribution of the LR test is that the null hypothesis
does not correspond to a single point in the parameter space but, rather, to a set of points on the boundary

. As in the report by Chernoff and Lander (1995), we reparametrize the model, to avoid{(a,l) : a = .5,.5 � l � 1}
this difficulty. For the current problem, a convenient reparametrization is and2b = 4(.5 � a) b = 4(.5 � a)(.5 �1 2

. Let . Then the null hypothesis corresponds to a single point (0, 0). The parameter space becomesl) b = (b ,b )1 2

2B = {(b ,b ) : 0 � b � 1,0 � b � 1,b � b } .1 2 1 2 2 1

In terms of the parameter b, the likelihood can be written as

x �1/2 1/2 k�2x �1/2 1/2 k�2xL (b; x) = (1 � b ) [(1 � b b )(1 � b ) � (1 � b b )(1 � b ) ] .k 1 2 1 1 2 1 1

Note that the new null-hypothesis point (0,0) is on the boundary of this parameter space. In Appendix B, it is
shown that the Fisher information matrix at 0, denoted by I(0), is a diagonal matrix with both diagonal elements
strictly positive. Thus we can write , where and . After transformation2 2 ∗I(0) = diag(a ,a ) a 1 0 a 1 0 b =1 2 1 2

, the new parameter space becomes�1/2I (0)b
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∗ �1 �1 2 2B = {(b ,b ) : 0 � b � a ,0 � b � a ,b � (a /a )b } .1 2 1 1 2 2 2 1 2 1

The tangent cone of at (0, 0) is the first quadrant . On the basis of either the result∗B C = {(b ,b ) : b � 0,b � 0}0 1 2 1 2

reported by Chernoff (1954) or that reported by Self and Liang (1987), 2logL1 converges, in distribution, to

2 2 d 2 2 2X {k Z k � inf k Z � x k = .25x � .5x � .25x , (A1)0 1 2
x�C0

where . The second equality in expression (A1) follows because (i) the probability of Z falling in theZ ∼ N(0,I )2

first quadrant is .25, and, given that Z falls in the first quadrant, ; (ii) the probability of Z falling in the2X ∼ x2

second or forth quadrant is .5, and, given that Z falls in the second or forth quadrant, ; and (iii) the2X ∼ x1

probability of Z falling in the third quadrant is .25, and, given that Z falls in the third quadrant, , withX = 0
. In addition, we also use the fact that the length of a normal random vector with mean 0 is independentP = 1.0

of its direction.

Appendix B

Positive Definiteness of the Information Matrix

We now show that I(0) is a diagonal matrix and is strictly positive definite. To this end, it suffices to show that
the Fisher information matrix Ik(0) corresponding to Lk at is diagonal and strictly positive definite forb = 0 k �
, since , where . When the binomial expansion is used,K2 I(0) = S t I (0) K � 2k=1 k k

k�2x k�2xk�2x k�2x
�k x i/2 (i�1)/22 (1 � b ) b � b b� �1 1 2 1( ) ( )[ ]i ii=0,i e en i=1,i oddv

if x � [(k � 1)/2]

2x�k 2x�k2x�k 2x�k
�k k�x i/2 (i�1)/2L (b; x) = 2 (1 � b ) b � b b .� �k 1 1 2 1( ) ( )[ ]i ii=0,i e en i=1,i oddv{ if x � k � [(k � 1)/2]

�k k/22 (1 � b ) if x = k/2, k even1

This expression is needed in the computation of the Fisher information matrix. Let . After some tedious� = log Lk k

calculation,

2

k�2x k�2x
�x � 2 � if x � [(k � 1)/2]( ) ( )4 2

2
2� � (b; x) 2x�k 2x�kk = �(k � x) � 2 � if x � k � [(k � 1)/2] ,2 F ( ) ( )�b 4 21 b=0 {

�k/2 if k is even and x = k/2
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k�2x k�2x
� � (k � 2x) if x � [(k � 1)/2]( ) ( )3 2

2� � (b; x) 2x�k 2x�kk = � (2x � k) if x � k � [(k � 1)/2] , (B1)F ( ) ( )�b �b 3 21 2 b=0 {
0 if k is even and x = k/2

and

2� � (b; x)k 2= �(k � 2x) .2 F�b2 b=0

Let

a (k) a (k)11 12I (0) =k [ ]a (k) a (k)12 22

be the Fisher information matrix. The entries of Ik(0) can be obtained by taking expectations of the second derivatives.
First,

2� � (b; x)ka (k) = �E11 2 F[ ]�b1 b=0

[(k�1)/2] k k�2i k�2i
�k�12 i � 2 � if k is odd� ( )[ ( ) ( )]

i 4 2i=0

= .
[(k�1)/2]

2{ k k�2i k�2i k
�k2 2 i � 2 � � (k/2) if k is even� ( ) ( ) ( ) ( ){ [ ] }i 4 2 k/2i=0

By the symmetry of expression(B1), it can be shown that

2� � (b; x)ka (k) = E = 0 .12 F[ ]�b �b1 2 b=0

For entry a22,

k2� � (b; x)k k�k 2a (k) = �E = 2 (k � 2i) = k ,� ( )22 2 F[ ] i�b i=02 b=0

where the following two identities are used:

k

k k�1i = k2� ( )ii=0

and

k

k 2 k�2 k�1i = k(k � 1)2 � k2 .� ( )ii=0
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So the Fisher information matrix is

a (k) 011I (0) = .k [ ]0 k

Finally, to show that Ik(0) is strictly positive definite when , it suffices to show that for everyk � 2 a (k) 1 011

. For and ,k � 2 k � 2 0 � i � [(k � 1)/2]

2 1k�2i k�2ii � 2 � = i � (k � 2i)(k � 2i � 1)[�(k � 2i � 2)(k � 2i � 3) � 3(k � 2i)(k � 2i � 1)] � 0 .( ) ( )4 2 12

When , this term becomesi = 0

2 1k k�2 � = (k)(k � 1)[�(k � 2)(k � 3) � 3(k)(k � 1)] 1 0, if k � 2 .( ) ( )4 2 12

Thus when . This shows that Ik(0) is strictly positive definite.a (k) 1 0 k � 211

Appendix C

Computation of the Conditional Probabilities for the Section entitled “Power Comparison, between the TDT, the
Mean Test, and the DMLB, for ASP Data”

Table C1

Conditional Probabilities of Marker Genotype of Affected Child, Given Parental Mating Type

MATING TYPE

CONDITIONAL PROBABILITY OF MARKER

GENOTYPE OF AFFECTED CHILDa

MATING-TYPE

PROBABILITYB1B1 B1B2

DB /DB #1 2

DB /DB1 1

1 f22
1 f22

32P (DB )P(DB )1 2

DB /dB # DB /DB1 2 1 1
1 (f (1 � v) � f v)2 12

1 (f v � f (1 � v))2 12
32P (DB )P(dB )1 2

dB /DB # DB /DB1 2 1 1
1 (f (1 � v) � f v)1 22

1 (f v � f (1 � v))1 22
22P(DB ) P(dB )P(DB )1 1 2

dB /dB # DB /DB1 2 1 1
1 f12

1 f12
22P(DB ) P(dB )P(dB )1 1 2

DB /DB # DB /dB1 2 1 1
1 (f � f )2 14

1 (f � f )2 14
24P (DB )P(dB )P(DB )1 1 2

DB /dB # DB /dB1 2 1 1
1 (f (1 � v) � f � f v)2 1 04

1 (f v � f � f (1 � v))2 1 04
24P (DB )P(dB )P(dB )1 1 2

dB /DB # DB /dB1 2 1 1
1 (f (1 � v) � f � f v)0 1 24

1 (f (1 � v) � f � f v)2 1 04
24P(DB )P (dB )P(DB )1 1 2

dB /dB # DB /dB1 2 1 1
1 (f � f )1 04

1 (f � f )1 04
24P(DB )P (dB )P(dB )1 1 2

DB /DB # dB /dB1 2 1 1
1 f12

1 f12
22P(DB )P(DB )P (dB )1 2 1

DB /dB # dB /dB1 2 1 1
1 (f v � f (1 � v))0 12

1 (f (1 � v) � f v)0 12
22P(DB )P (dB )P(dB )1 1 2

dB /DB # dB /dB1 2 1 1
1 (f (1 � v) � f v)0 12

1 (f v � f (1 � v))0 12
32P (dB )P(DB )1 2

dB /dB # dB /dB1 2 1 1
1 f02

1 f02
32P (dB )P(dB )1 2

a f0, f1, and f2 are the penetrances of the disease genotypes dd, Dd, and DD, respectively. v is
between the disease and marker locus.

In the calculation below, we assume that (a) mating is random in the population, (b) Hardy-Weinberg equilibrium
holds in the parental generation, (c) the population is homogeneous with respect to all the genetic parameters, (d)
the disease locus has two alleles, d and D, where D is the disease-causing allele or increases the risk of disease,
and (e) the affection status in children is independent conditional on their genotypes at the disease locus.

For any column vectors u and v of k dimensions, define the following symbolic operations: m m m tu = (u , ) ,u ) ,1 k

and . We will reserve ut to denote the transpose of u.tu�v = (u v , ) ,u v )1 k1 k



Table C2

Conditional Probabilities of Marker Genotype of Affected Child, Given Parental Mating Type

CONDITIONAL PROBABILITIES OF MARKER GENOTYPE OF AFFECTED CHILD

MATING TYPE B1B1 B1B2 B2B2 MATING-TYPE PROBABILITY

DB /DB # DB /DB1 2 1 2
1

f24
1

f22
1

f24
2 2P (DB )P (DB )1 2

DB /dB # DB /DB1 2 1 2
1 [f (1 � v) � f v]2 14

1 (f � f )2 14
1 [f v � f (1 � v)]2 14

22P (DB )P(DB )P(dB )1 2 2

dB /DB # DB /DB1 2 1 2
1 [f (1 � v) � f v]1 24

1 (f � f )1 24
1 [f v � f (1 � v)]1 24

22P(DB )P(dB )P (DB )1 1 2

dB /dB # DB /DB1 2 1 2
1

f14
2

f14
1

f14 2P(DB )P(DB )P(dB )P(dB )1 2 1 2

DB /dB # DB /dB1 2 1 2
1 2 2[f (1 � v) � f v(1 � v) � f v(1 � v) � f v ]2 1 1 04

2 2 2 2[f v(1 � v) � f (1 � v) � f v � f v(1 � v) ]2 1 1 04
1 2 2[f v � f v(1 � v) � f v(1 � v) � f (1 � v) ]2 1 1 04

2 2P (DB )P (dB )1 2

dB /DB # DB /dB1 2 1 2
1 2 2[f (1 � v) � f v(1 � v) � f v (1 � v) � f v ]1 0 2 14

1 2 2 2 2{4f v(1 � v) � f (1 � v) � f v � f [v � (1 � v) ]}1 0 0 24
1 2 2[f v � f v(1 � v) � f v(1 � v) � f (1 � v) ]1 0 2 14 2P(DB )P(DB )P(dB )P(dB )1 2 1 2

dB /DB # dB /DB1 2 1 2
1 2 2[f (1 � v) � f v(1 � v) � f v(1 � v) � f v ]0 1 1 24

2 2 2[f v(1 � v) � f (1 � v) � f v � f v(1 � v)]0 1 1 24
1 2 2[f v � 2f v(1 � v) � f (1 � v) ]0 1 24

2 2P (dB )P (DB )1 2

dB /dB # DB /dB1 2 1 2
1 (f (1 � v) � f v)1 04

1 (f � f )1 04
1 [f v � f (1 � v)]1 04

22P(DB )P(dB )P (dB )1 1 2

dB /dB # dB /DB1 2 1 2
1 (f (1 � v) � f v)0 14

1 (f � f )0 14
1 [f v � f (1 � v)]0 14

22P(DB )P (dB )P(dB )2 1 2

dB /dB # dB /dB1 2 1 2
1

f04
2

f04
1

f04
2 2P (dB )P (dB )1 2

NOTE.—See footnote to table 1.
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The calculation below is applicable to general multiplex-sibsip data. First consider a nuclear family with parental
mating type and s affected children, where . Let f0, f1, and f2 be the conditional probabilities ofB B # B B s � 11 2 1 1

being affected, given the disease genotypes dd, dD, and DD, respectively. Let g11 and g12 denote the column vectors
whose elements are listed, in table C1, under the “B1B1” and “B1B2” column heads, respectively.

Let w1 denote the column vector of mating-type probabilities given, in table C1, under the “Mating-Type Prob-
ability” column head. Let k be the number of affected children with marker B1B1. We have

P(k B B sibs, (s � k) B B sibs, B B # B B Fs affected sibs, H)1 1 1 2 1 2 1 1

= P(k B B sibs, (s � k) B B sibsFs affected sibs, B B # B B )P(B B # B B Fs affected sibs, H) . (C1)1 1 1 2 1 2 1 1 1 2 1 1

The conditional probability of offsprings’ marker data, given that they are affected and that their parental marker
genotypes are known, can be computed by means of the following equations:

P(k B B sibs, (s � k) B B sibsFs affected sibs, B B # B B )1 1 1 2 1 2 1 1

P(k B B sibs, (s � k) B B sibs, s affected sibs, B B # B B )1 1 1 2 1 2 1 1= , (C2)
P(s affected sibs, B B # B B )1 2 1 1

where

s k s�k tP(k B B sibs ,(s � k) B B sibs, s affected sibs, B B # B B ) = [(g )�(g )] w ,1 1 1 2 1 2 1 1 11 12 1( )k

and

s tP(s affected sibs, B B # B B ) = [(g � g ) ] w . (C3)1 2 1 1 11 12 1

For a family with parental marker genotype and s affected sibs, suppose that there are k1 sibs withB B # B B1 2 1 2

marker B1B1, k2 sibs with marker B1B2, and sibs with marker B2B2. Let g2.11, g2.12, and g2.22 be thek = s � k � k3 1 2

column vectors whose elements are listed, in table C2, under the “B1B1,” “B1B2,” and “B2B2” column heads,
respectively. Let w2 be the vector of mating-type probabilities listed, in table C2, under the “Mating Type Proba-
bilities.” column head. Then,

k k k t1 2 3s! [g �g �g ] w2.11 2.12 2.22 2P(k B B ,k B B ,k B B Fs affected sibs, B B # B B ) = .1 1 1 2 1 2 3 2 2 1 2 1 2 s tk !k !k ! [(g � g � g ) ] w1 2 3 2.11 2.12 2.22 2

The conditional probability of a particular mating type, given that there are s affected sibs and that at least one
parent is heterozygous, can be calculated on the basis of the equations given above; for example,

P(s affected sibs, B B # B B )1 2 1 1P(B B # B B Fs affected sibs, H) = , (C4)1 2 1 1 P(s affected sibs, H)

where the numerator can be calculated by means of expression (C3), and where the denominator is

P(s affected sibs, H) = P(s affected sibs, B B # B B ) � P(s affected sibs, B B # B B )1 2 1 1 1 2 2 2

�P(s affected sibs, B B # B B ) .1 2 1 2

Now the conditional probabilities defined in the section entitled “Power Comparison, between the TDT, Mean
Test, and DMLB, for ASP Data” can be computed easily, by means of equations (C1), (C2), and (C4) together
with tables C1 and C2. Table 1 is for the mating type of one heterozygous parent, and table C2 is for the mating
type in which both parents are heterozygous.
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